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SUMMARY

We have combined a machine-learning approach
with other strategies to optimize knockout efficiency
with the CRISPR/Cas9 system. In addition, we have
developed a multiplexed sgRNA expression strategy
that promotes the functional ablation of single genes
and allows for combinatorial targeting. These strate-
gies have been combined to design and construct a
genome-wide, sequence-verified, arrayedCRISPR li-
brary. This resource allows single-target or combina-
torial genetic screens to be carried out at scale in a
multiplexed or arrayed format. By conducting parallel
loss-of-function screens, we compare our approach
to existing sgRNA design and expression strategies.

INTRODUCTION

Genetic screens have played a fundamental role in charting ge-

notype-phenotype interaction maps for a variety of organisms

(Carpenter and Sabatini, 2004). However, confounding factors,

such as non-uniformity in the efficacies of targeting molecules,

have limited the depth to which data from such studies can be in-

terpreted. These problems have been somewhat mitigated for

short hairpin RNA (shRNA)-based gene silencing because, after

several rounds of optimization, experimentally validated

algorithms for selecting potent guide sequences have been

developed (Fellmann et al., 2011; Knott et al., 2014; Pelossof et

al., 2017). Similar approaches have been applied for selecting

Cas9guideRNAs (sgRNAs) for usewith the type II clustered regu-

larly interspaced short palindromic repeats (CRISPR) system,

where large sgRNA potency datasets were used to train predic-

tion algorithms (Chari et al., 2015; Doench et al., 2014, 2016).

However, unlike with mRNA cleavage, Cas9-induced double-

strand breaks (DSBs) leave a genomic scar whose characteris-

ticsdetermine thephenotypic consequencesof targeting a locus.

The distance of the target from the translation start site is anti-

correlated with sgRNA efficacy, probably because N terminus

proximal frameshift mutations (FSMs) are more likely to induce

nonsense-mediated mRNA decay or the production of truncated
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nonfunctional proteins (Doench et al., 2014). Non-homologous

end joining (NHEJ) was thought to act as the predominant repair

mechanism at Cas9-induced DSBs; this made predicting the

likelihood of an FSM, for a given target, impossible. However,

deep sequencing of these genomic scars has revealed that

some homologous end joining (HEJ) contributes to repair of

Cas9 cleavage events (Bae et al., 2014). Here the frequencies

of specific repair resolutions are dependent on the length, gua-

nine-cytosine (GC) content, and distance from the cut site of

the two DSB-flanking homologous loci, suggesting that these

likelihoods can be estimated. Finally, sgRNAs that focus Cas9

to functional domains provide a greater probability of phenotypic

impact, likely because in-frame mutations in these regions have

a greater potential to disrupt protein function (Shi et al., 2015).

The implementation of optimized effector expression strate-

gies should also drive the efficacy of CRISPR knockout assays.

Systems have been developed in which multiple RNA polymer-

ase III promoters drive independent sgRNAs (Vidigal and Ven-

tura, 2015). Alternatively, others have shown that Cpf1 can be

focused to multiple targets in cells that express crRNA arrays

harboring independent sgRNAs (Zetsche et al., 2017). These

tools have primarily been applied in order to characterize combi-

natorial gene interactions and to delete non-coding sequences.

However, these strategies may also aid in studies where single

gene knockouts are desired in each cell, as the simultaneous

focusing of Cas9 to multiple sites within the target should elicit

greater functional consequences.

DESIGN

Not all of the strategies outlined above have been experimen-

tally validated, nor have they been integrated into a consoli-

dated framework for constructing sgRNA expression vectors.

We reasoned that a gain in sgRNA efficacy could be achieved

by combining current selection methods with strategies to maxi-

mize the likelihood of functionally deleterious genomic scars. We

developed an sgRNA selection algorithm that identifies puta-

tive targetsbasedonpredictive nucleotidecombinations, the like-

lihood of an FSM, and whether the target lies in a functional

domain. For effector delivery, we have developed a system that

allows for the simultaneous expression of two independent

sgRNAs from each construct. With the goal of expressing two
ublished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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guides for a single target in each construct, we have developed a

computational algorithm that optimizes the likelihood of synergis-

tic deleterious effects. These methods have been validated

through a reanalysis of pre-existing data and by carrying out

comparative multiplexed CRISPR screens. We have predicted

construct designs for all protein-coding human genes and made

these available via a web portal (http://croatan.hannonlab.org/).

RESULTS

gRNA Selection Strategy
Two datasets of sgRNA efficacy have been used to develop exist-

ing selection algorithms. Doench et al. (2014) assessed the

potency of sgRNAs in libraries that tiled cell surface proteins.

There the abundance of integrated sgRNAs in FACS-isolated,

target-negative cells was used as a measure of effector strength.

Chari et al. (2015) infected cells with scrambled Cas9 targets and

then transfected the samecellswith corresponding sgRNAs. Here

target mutation rates were the readout for efficiency. We devel-

oped a random-forest-based sgRNA prediction tool using these

two datasets for training. For each dataset, ten random forests

were trained to separate potent andweakguides,whichwerepre-

classified based upon a top- and bottom-40% efficacy cutoff,

respectively. All 3mers in the region spanning four nucleotides up-

streamand six nucleotides downstreamof the sgRNAbinding site

were used as input. The ten random forests were trained using

incrementally increasing penalties for false-positive predictions.

Thus, those trained with higher values were more stringent in as-

signing potency to a target. When analyzing new sgRNAs, se-

quences receive scores equal to the highest stringency level

they pass in both random forest sets. This scoring system was

applied to sgRNAs in the Doench tiling set that were withheld dur-

ing training, and a significant difference in efficacy is observed

when comparing sgRNAs that pass versus those that fail the min-

imum-stringency threshold (Figure S1A, rank-sump value < 0.01).

Beyond this, increments in prediction values are notmatchedwith

significant efficiency gains, although scores do correlate with po-

tency globally.

The advantage of focusing Cas9 to known functional protein

domains has been previously recognized (Shi et al., 2015). How-

ever, as many genes lack well-defined domain information, this

strategy is not easily applied to the construction of genome-scale

sgRNA collections. As a surrogate, we used amino-acid conser-

vationat theCas9cut-site toguidesgRNAselection.Weassigned

scores to targets based on the predicted deleterious effects of

DSB-proximal amino acid substitutions, which were calculated

using the protein variation effect analyzer (PROVEAN) algorithm

(Figure S1B; Choi et al., 2012). A reanalysis of the Doench tiling

set shows that, for sgRNAs that pass theminimum random forest

stringency threshold, these scores are correlated with the proba-

bility of inducing a measurable phenotype (Figure 1A, Spearman

correlation [r] = 0.32).

Others have demonstrated that repair at Cas9-induced DSBs

is partially driven by HEJ (Figure S1C; Bae et al., 2014). Using

deep-sequencing data of Cas9 targets, we developed a linear

regression model to predict the likelihood of homology-guided

repair resolutions based on the length, GC content, and dis-

tance to the DSB of the corresponding homologous loci. The
overall likelihood of an FSM at a target is measured as the frac-

tion of predicted resolution scores that correspond to FSMs

(Figure S1D, r = 0.74). This is only relevant for targets where ho-

mologous repair is likely. Thus, a lower-limit cutoff equal to the

median of likelihood sums for HEJ-guided resolutions at human

CDS Cas9 targets is applied as well. A reanalysis of the Doench

dataset demonstrates that, for sgRNAs that pass the minimum

random forest stringency threshold, a gain in efficacy can be at-

tained by selecting targets where there is >66% chance that an

FSM will occur (Figure 1B, rank-sum p value < 0.05).

To consolidate these predictive component algorithms, we

first group sgRNAs based on the stringency level they passed

during random-forest analysis (groups A, B, and C, Figure S1E).

Within each group, sgRNAs are ranked based on their passing

conservation and FSM-likelihood threshold tests. The median

score of all human CDS Cas9 sites is the lower-limit threshold

for conservation. We set a threshold of 66% to qualify sgRNAs

as being likely to induce an FSM. sgRNAs in group A are given

a score between one and three based on their passing zero,

one, or two of the conservation and FSM-likelihood tests.

With these same tests, sgRNAs in groups B and C are assigned

scores between four and six and between seven and nine,

respectively. A reanalysis of the Doench tiling set with this

algorithm, which we call CRoatan, demonstrates that scores

correlate strongly with potency (Figure 1C, r = 0.52). When

CRoatan was applied to identify ten sgRNAs for each protein-

coding gene in the refseq annotation, the algorithm could identify

high-scoring sgRNAs for each target (Figure S1F).

To evaluate CRoatan empirically, we constructed four CRISPR

librarieswhoseoutputwould informon thequality of the tool. Each

library was composed of 200 sgRNAs targeting 20 essential and

20 nonessential genes (EG and NEG, respectively; five sgRNAs

per gene). EGs were identified in a summary analysis of indepen-

dent shRNA screens, and olfactory-receptor genes served as

NEGs (Marcotte et al., 2012). For each library, a different sgRNA

selection tool was used to define inclusion: gene perturbation

platform (GPP; Doench et al., 2014), sgRNAScorer (Chari et al.,

2015), Edit-R (Dharmacon), and CRoatan. Libraries were cloned

into a lentiviral backbone where human U6 drives sgRNA expres-

sion and where a zsGreen-P2A-Puromycin bicistronic transcript

is expressed from the spleen focus-forming virus promoter

(SFFV). Libraries were packaged and infected into A-375 mela-

noma and K-562 leukemia cells, and following selection with pu-

romycin, the cells were passaged for�12 doublings. Normalized

log ratioswere then calculatedbasedonconstruct abundances in

the infected and final cell populations (Knott et al., 2014).

To assess the effectiveness of our effector selection strate-

gies, we calculated gene-normalized depletion scores for all

EG-sgRNAs in the CRoatan library. We could not test the initial

grouping strategy, as all sgRNAs were group C members (Fig-

ure S1E). The depletion rates of EG-sgRNAs were correlated

with CRoatan score (Figure 1D, r = 0.52). Depletion rates

were not found to correlate with conservation or FSM-likeli-

hood scores alone. When EG-sgRNA depletion rates were

compared among the four libraries, CRoatan sgRNAs were

found to be significantly more reduced in representation than

those identified with the sgRNAScorer and Edit-R tools (Fig-

ure 1E, rank-sum p value < 0.05). CRoatan EG-sgRNAs were
Molecular Cell 67, 348–354, July 20, 2017 349
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Figure 1. CRoatan, an Algorithm for Identi-

fying Potent sgRNAs

(A) Thepotencyof sgRNAsanalyzed inDoenchetal.

stratified by conservation score (calculated as

described in Figure S1B, r = 0.32). An sgRNA

percentile is thepercentile rankof ansgRNA relative

to all other effectors targeting the same gene. This

plot, as all others in the figure, was generated with

the MATLAB boxplot function using default

parameters. The edges of the box are the 25th and

75th percentiles. The error bars extend to the values

q3+w(q3�q1) andq1�w(q3�q1),wherew is 1.5

and q1 and q3 are the 25th and 75th percentiles.

(B) Efficacy percentiles of the sgRNAs analyzed in

Doench et al. when stratified by the likelihood of

frameshift mutations (FSM likelihood) at the cor-

responding target site (rank-sum p value = 0.0405

for tertile 3 versus tertile 1 and 2 sgRNAs).

(C) Efficacy percentiles of the sgRNAs analyzed in

Doench et al. when stratified by the consolidated

CRoatan algorithm (r = 0.52).

(D) Z-score-normalized depletion rates of EG-

sgRNAswhen stratified byCRoatan score (r= 0.21).

Depletion rates were calculated as the average log

ratio in screens carried out in A-375 and K-562 cells.

(E) Depletion rates of NEG- and EG-targeting

sgRNAs in screens corresponding to those

described in (D). sgRNA libraries were designed

using the GPP-WP, sgRNAScorer, and Edit-R al-

gorithms (rank-sum p value = 0.0942 for GPP-WP,

0.0209 for sgRNAScorer, and 0.0233 for Edit-R).
more depleted than those identified with the GPP algorithm;

however, this difference was not statistically significant (rank-

sum p value > 0.05).

Dual-sgRNA Expression Constructs
We reasoned that a higher frequency of deleterious mutations

could be inflicted by simultaneously focusing multiple inde-

pendent sgRNAs to each gene target. Toward this end, we

constructed a lentiviral vector harboring two divergent U6 pro-

moters, where the 50 promoter was human and the 30 promoter

was chicken (Figure 2A, hU6 and cU6, respectively). These

were chosen to reduce the probability that recombination

would eliminate critical elements of the cassette. Between the

promoters is an identification barcode, which is bordered by
350 Molecular Cell 67, 348–354, July 20, 2017
Illumina adapters, for sequencing-based

quantification of construct abundances.

The vector also harbors a bicistronic

zsGreen-P2A-Puromycin transcript that

is expressed from SFFV.

We designed an algorithm to pair

sgRNAs for a target within the dual-U6

vector to maximize the probability of

synergistic deleterious effects. The algo-

rithm receives as input ten sgRNAs,which

have been extracted from the top-20

CRoatan-scoring effectors, after they

have been reranked to reflect off-target

likelihoods (Figure 2B; Knott et al., 2014).
A10310pairwise scorematrix is thencalculatedusingaheuristic

scoring algorithm (Figure S2A). sgRNAs with overlapping targets

are not considered for pairing. To ensure that each construct har-

bors at least one potent effector, the algorithm increments the

score of sgRNA pairs with unbalanced CRoatan scores. sgRNA

pairs are also increased in their scores if they target the same

exon or two exons that contribute to a common set of isoforms.

Finally, we predicted that DSB-DSB blunt-end joining would be

the predominant repair resolution in cases where simultaneous

cleavage events caused the target-flanked region to be deleted.

Thus, the score is also increased for each pair whose deletion

fragment length corresponds to an FSM. After the sgRNA pairs

have been scored, a weighted maximum matching algorithm is

applied to identify thecouplingwith thehighest sumofpair scores.
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Multiple sgRNAs Results in Predictable

Genomic Scars

(A) Schematic map of the lentiviral, dual-sgRNA

expression vector with relevant features high-

lighted. hU6, human U6 promoter; cU6, chicken

U6 promoter; hsgRNA, human U6-promoter-

driven sgRNA; csgRNA, human U6-promoter-

driven sgRNA; HTS, high-throughput sequencing

adapters; SFFV, spleen focus-forming virus

promoter.

(B) sgRNA pairing algorithm used to design five

targeting constructs for a gene. The top 20 sgRNAs

for each gene are filtered to a set of 10 to reduce the

probability ofoff-targetingeffects.Pairswithin these

10are thenscoredusing thesetofheuristicsdefined

in Figure S2. The resultant pairing matrix is then

used as input for a maximum-weighted matching

algorithm to define a final set of 5 sgRNA pairs.

(C) Paired-end sequencing analysis of genomic

scars left after dual-CRoatan NEG-targeting con-

structs have been infected into A-375 and K-562

cells. hsgRNA and csgRNA indels are where only

one of the two targeted regions shows mutational

burden in an HTS fragment. hsgRNA and csgRNA

indel counts represent cases where both targets

have indels, and fragment deletions are where the

region between the two targets is deleted.

(D) Analysis of the genomic scars described in (C)

that correspond to fragment deletions between

two sgRNA target sites. The top ten most frequent

deletions are shown with their corresponding rate

of occurrence, as measured by their average fre-

quency in infected A-375 and K-562 cells. Scars

that result from exact deletion of the double-

strand-break-flanked fragment are annotated as

DSB-DSB deletions. Scars where, in addition to

the fragment deletion, other bases are inserted or

deleted are annotated as non-DSB-DSBdeletions.
To test our library assembly strategy, we cloned dual-CRoatan

constructs for three olfactory receptor genes (OR10A4, OR2W5,

and OR6C74) and infected A-375 and K-562 cells with these.

These sgRNA pairs were chosen for the short distance between

their corresponding targets, which allows simultaneous analysis

of both sites with Illumina paired-end sequencing. We profiled

the genomic scars that had been left after infection and found

that high rates ofmutation existed for all sgRNA pairs (Figure 2C).

Fragment deletion between the two targets was the predominant

scar. A deeper analysis revealed that, in these cases, the most

commonly observed resolution was the predicted blunt-end

joining of the two DSBs (Figures 2D and S2B).

High-Throughput Analysis of Library Efficacy
To evaluate our strategymore broadly,we designeda combinato-

rial CRISPR screening library whose output would inform on the

contributions that the CRoatan algorithm, as well as the dual-
Mol
sgRNA expression system, made to re-

agent efficacy. The library was composed

of 100 sgRNAs targeting 20 EGs and 20

NEGs. sgRNAs were cloned into both the
hU6 and cU6 positions, which resulted in a final library harboring

10,000sgRNApairs. The constructswere screened inA-375 cells,

and these experiments were processed in the same manner as

those experiments described in Figures 1D and 1E.

Toassess the impact of theCRoatanalgorithmconstituents,we

calculated gene-normalized depletion scores for constructs

harboring one EG-sgRNA, as depletion rates could be attributed

directly to the efficacy of this effector for these constructs. In

contrast to the single-sgRNA CRoatan screen described in Fig-

ures 1D and 1E, here depletion rates were significantly greater

for EG-sgRNAs that passed the conservation and FSM-likelihood

thresholds, indicating that these two strategies contributed posi-

tively (Figures S3A and S3B, Friedman p value < 0.05). We reason

that this correlation was observable here, and not in the initial

CRoatan screen, because for each EG-sgRNA, the score was

calculated as the average depletion rate of the 100 constructs in

which it was paired with an NEG-sgRNA. Also, as was the case
ecular Cell 67, 348–354, July 20, 2017 351
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(A) Average depletion rates for each EG-sgRNA when it is paired with NEG-sgRNAs (gray) and when it is paired with sgRNAs targeting the same EG (brown).

sgRNAs are grouped based on the gene target; rank-sum p value = 0.0006.

(B)Depletion rates ofNEG-andEG-targetingCRISPRconstructs innegative-selection screens. Shownare theconsolidateddepletion rates for single-sgRNAconstructs

selected using pre-existing tools (GPP, sgRNAScorer, or Edit-R algorithms) as well as the rates for CRoatan single-sgRNA constructs and CRoatan dual-sgRNA con-
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(C) Gene-level analysis of CRoatan and CRoatan dual-sgRNA construct depletion rates. Using the average depletion rate for each construct in A-375 and K-562

cells, gene ‘‘hits’’ were calculated using a series of stringencies (top 10%, 20%, 30%, 40%, and 50% most-depleted sgRNAs). For a gene to be called a hit at a

given stringency, a minimum of two constructs need to be depleted beyond the stringency level.
for the initial CRoatan screen, depletion rates correlated positively

with CRoatan score (Figure S3C, Friedman p value < 0.01).

A significant increase in depletion levels was also observed

when constructs harboring two EG-sgRNAs were compared to
352 Molecular Cell 67, 348–354, July 20, 2017
those harboring one or zero EG-RNAs (Figure S3D, rank-sum p

value < 0.01). This was also evident at the individual sgRNA level.

For each EG-sgRNA, we calculated the mean depletion rate of

constructs where it was paired with an NEG-sgRNA and also



where it was paired with one of the other four sgRNAs that target

the same gene. Nearly all of the EG-sgRNAs elicited a more

robust phenotype when they were paired with other sgRNAs tar-

geting the same gene (Figure 3A, rank-sum p value < 0.001).

As a final test of our consolidated strategy, we constructed

a CRISPR library using the CRoatan algorithm and the pairing

principles outlined in Figures 2A, 2B, and S2A (dual-CRoatan).

Each construct in the library harbors two sgRNAs that together

target one of the 10 EGs or 10 NEGs described in Figures 1D

and 1E for multiplexed mutagenesis. The library was screened

and analyzed as was described for these earlier experiments.

The EG-targeting dual-CRoatan constructs had significantly

higher depletion rates than the single-sgRNA constructs. This

was true when all sgRNAs identified with existing algorithms

were considered together and also when sgRNAs identified

with the GPP, sgRNAScorer, and Edit-R algorithms were con-

sidered separately (rank-sum p values = 2.4e-5, 0.005, 3.9e-5,

and 0.002, respectively). EG-targeting constructs in the dual-

CRoatan library were more depleted than their counterparts

in the CRoatan library; however, this difference was deemed

statistically insignificant (rank-sum p value > 0.05). Finally, we

analyzed the CRoatan and dual-CRoatan screens to identify

gene-level ‘‘hits.’’ Using a two-construct minimum threshold

to identify a gene as depleted, we calculated false-positive

and true-positive rates at a series of construct depletion cut-

offs. This analysis demonstrated the superiority of the dual-

CRoatan library in terms of both sensitivity and specificity

(Figure 3C).

DISCUSSION

The CRISPR-Cas9 system has been applied to a variety of

molecular manipulations, with the most common being pertur-

bation of gene function inmammalian cells. This can be achieved

by inducing mutations in target gene coding sequences or

by focusing transcriptional regulators to gene promoters. Others

have demonstrated, through a set of parallel loss-of-func-

tion screens, that mutagenesis is more effective at ablating

gene function. Here we have combined machine-learning and

sgRNA-expression strategies to create CRISPR constructs that

maximize the likelihood of mutation-based functional silencing.

Through a set of parallel genetic screens, we have demonstrated

that these reagents are significantly more efficacious than other

available tools. Based upon these results, we have assembled a

sequence-verified collection of CRISPR constructs using these

design principles.

We have demonstrated that a significant gain in efficacy is

attained when two independent sgRNAs simultaneously focus

Cas9 to the target gene. Thus, we have designed the library

such that two sgRNAswith high prediction scores are expressed

from each construct (Figure S3E). An added benefit of this strat-

egy is that constructs can be easily manipulated to target gene

pairs to interrogate synthetic interactions. This feature will be

particularly useful for identifying parallel or related molecular

pathwayswith combinatorial screens. Another feature of the tool-

kit is the availability of individual sequence-verified constructs,

which allows large-scale screens to be carried out in an arrayed

format.
Overall, we hope that this toolkit will be of benefit to the scien-

tific community, as it will allow individual and combinatorial gene

knockouts to be carried out on a large scale in both multiplexed

and arrayed formats. The library design includes five constructs

for each protein coding human Refseq gene. At present, the

library is comprised of �50,000 sequence-verified constructs;

the goal is to complete the collection at five constructs per

�20,000 predicted genes.
LIMITATIONS

At the date of publication, half of the�100,000 construct designs

in the human library had been sequence verified and included in

the physical resource. Thus, there is poor coverage, in terms of

targetingmolecules, for a subset of genes. Current coverage sta-

tistics are reported on the following web portal: http://croatan.

hannonlab.org.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw and analyzed data This paper GEO: GSE97434

Human reference genome NCBI build 37, GRCh37 Genome Reference

Consortium

http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

Experimental Models: Cell Lines

A-375 ATCC CRL-1619

A-375-Cas9 This paper

K562-Cas9 Gift by the Vakoc

Laboratory (CSHL)

Oligonucleotides

Primers used to generate sgRNAs libraries, see Table S1 This paper N/A

Sequenced included in the DNA chip used to clone

combinatorial sgRNA libraries, see Table S2

This paper N/A

Primers used to amplify sgRNAs from gDNA and sequence

targeted loci, see Table S3

This paper N/A

Recombinant DNA

pCRoatan-dualSgRNA This paper N/A

pCRoatan-singleSgRNA This paper N/A

pCRoatan-dualPromoter This paper N/A

Software and Algorithms

Bowtie Langmead et al., 2009 RRID: SCR_005476

Bwa Li and Durbin, 2009 RRID:SCR_010910

Other

Resource website for the paper This paper http://croatan.hannonlab.org/

CRoatan dual-sgRNA cloning protocol This paper Methods S1
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Gregory

Hannon (greg.hannon@cruk.cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
CRISPR/Cas9 screens were performed in melanoma A-375 (ATCC CRL-1619, female) and chronic myelogenous leukemia K-562

(ATCC CCL-243, female) cell lines. A-375 were grown at 37C in DMEM, supplemented with 10% FBS and penicillin/streptomycin.

K-562 were grown at 37C in RPMI1640 supplemented with 10% FBS and penicillin/streptomycin. The 293FT cell line (Thermo-

Fischer) was grown at 37C in DMEM supplemented with 10% FBS and penicillin/streptomycin.

A-375 cells were infected at lowMOI by virus produced using lentiCas9-Blast (Addgene #52962) (Sanjana et al., 2014) and selected

using blasticidin (10 mg/mL). Following 10 days of selection, single cells were sorted using the FACSAria IIU cell sorter (BD

Biosciences) into 96-well plates. 10 A-375-Cas9 clones were tested for Cas9 functionality by infection with a vector expressing

ZsGreen and an sgRNA targeting ZsGreen. Knockout efficiency was estimated by flow cytometry after 14 days. One of the

A-375-Cas9 clonal lines exhibiting more than 50% knockout of ZsGreen in this assay was selected for further experiments. The

K-562 clonal cell line expressing Cas9 was kindly gifted by Dr. Vakoc (Cold Spring Harbor Laboratory).
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METHOD DETAILS

Random Forest Training and Scoring
Ten random forests were constructed for each of the Doench et al. and Chari et al. datasets. For each data type, sgRNAs in the top-

and bottom-40th percentile for each gene were classified as potent and weak, respectively. The 10 forests were trained using the

MATLAB treeBagger package (1000 trees per forest). Forests were trained using incrementally increasing penalties for false-positive

classifications (0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2). During training forests are constructed using the 28 overlapping 3mers of each

target as features, and the class of the target (potent or weak) as the output.

When a new target is being scored, it is decomposed into 28 3mers, and these are given to each of the 20 forests (10 corresponding

to the Doench et al. data and 10 to the Chari et al. data) as input. The target is then assigned a value between 0 and 10 corresponding

to the highest stringency forest it was assigned as potent by. For example, if a target was called potent by a Doench forest that was

trained with a penalty of 1.2 (6th lowest) and a Chari forest trained with a penalty of 1 (5th lowest), the target would receive a score of 5.

The data presented in Figures S1A and 1C were calculated using out-of-bag random forest predictions with default MATLAB

parameters.

sgRNA-Pair Scoring
For each gene, all pairwise scores were calculated for the top 10 CRoatan scoring sgRNAs. All sgRNA pairs begin with a score of 0.

Overlapping pairs are assigned a final score of 0. Pairs that are less than 10kb apart with DSB-DSB distances that are not divisible by

3 are assigned a score of 2.5 if they target the same transcripts. Scores are incremented by 1 if pairs have imbalanced CRoatan

scores (one less than 7 and one greater than 7). This scoring matrix is then given as input to the maximum weighted matching algo-

rithm (MATLAB maxWeightMatching).

sgRNA Library Construction
For single sgRNA libraries, sgRNA sequences were predicted using existing algorithms (Edit-R, sgRNAScorer, GPP web portal and

CRoatan) and oligonucleotides containing these sequences were ordered from Integrated DNA Technologies (IDT, Table S1). These

molecules were amplified by PCR (forward primer (FP): TTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGA

AAGGACGAAACACCG, reverse primer (RP): GGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC) and cloned by Gibson

assembly into a 3rd generation lentiviral vector harboring a U6 promoter, an sgRNA backbone, and a ZsGreen-P2A-PuromycrinR

transcript driven by a spleen focus-forming virus promoter (pCRoatan-singleSgRNA).

For dual sgRNA libraries, sgRNA sequences were predicted using CRoatan. Primers containing these sequences were ordered

from IDT (Table S1) and used to amplify a hU6-EM7-ZeocinR-cU6 cassette (pCRoatan-dualPromoter). The amplicon was digested

with BbsI (NEB) and ligated into a 3rd generation lentiviral vector (pCRoatan-dualSgRNA) previously digested with BsmBI

(ThermoFischer).

Combinatorial sgRNA libraries were built using DNA chips (CustomArray, Inc.) containing 10K molecules harboring a barcode and

two flanking sgRNA sequences (Table S2). Chips were amplified by 5 separate 18-cycle PCRs to ensure high-complexity end

product. The amplicons were first cloned by ligation into an intermediate cloning vector (pCR-BluntII TOPO based) using SpeI

(NEB) and ApaI (NEB). Subsequently, the hU6 and cU6 promoters driving the sgRNAs were added to the vector. The hU6 promoter

was amplified from lentiCrisprv2 (Addgene #52961) by PCR (FP: AGTACCGTCTCTGGTGTTTCGTCCTTTCCACAAG, RP: GTACCT

ACGCGTGAGGGCCTATTTCCCATGATTC), and cloned by ligation using the BsmBI (ThermoFischer) and MluI (NEB) restriction

sites. The cU6 promoter (cU6-3, Kudo and Sutou, 2005) was amplified from a gBlock (IDT) by PCR (FP: ATCGATCTCGAGG

CGCCGCCGCTCCTTCAGGCA, RP: TGATCCTGGTCTCACGACTAAGAGCATCGAGACTGC), and cloned by ligation using the

BsaI (NEB) and XhoI (NEB) restriction sites. Following these three steps, the full sgRNA1-hU6-EM7-ZeocinR-Barcode-cU6-sgRNA2

cassette was digested from the intermediate cloning vector using BbsI and ligated in the lentiviral expression vector (pCRoatan-dual-

SgRNA) as described previously. All transformations were performed with Invitrogen’s MegaX DH10B T1 electro-competent cells

using a Bio-Rad Gene Pulser Xcell and Bio-Rad Gene Pulser 1 mm cuvettes for electroporation. For each library, a minimum of

10 million successfully transformed cells were obtained.

sgRNA Library Screening
sgRNA libraries were packaged using the 293FT cell line (Thermo Fischer). Cells were co-transfected with library vector (60 mg),

pMDL (12.5 mg), CMV-Rev (6.5 mg) and VSV-G (9 mg) by calcium phosphate transfection. The media was replaced at 14h and

virus was collected at 36h and filtered using a 0.45 mM syringe filter (Millex�-HV, EMD Millipore). Viral infections were per-

formed at an MOI of 0.3 to ensure a maximum of one sgRNA integration per cell. sgRNA representation in the infected popu-

lation was maintained at a minimum of 1000 infected cells per sgRNA at each passage. All screens were performed in tripli-

cates. Two days after infection, cells were collected for a reference time point. After �12 doublings, cells were harvested

for a final time point. Infected cells were selected using Puromycin (1 mg/mL) after the initial time point and throughout the

screen.
e2 Molecular Cell 67, 348–354.e1–e4, July 20, 2017



CRISPR/Cas9 Library Processing and Analysis
Following cell harvests, DNA was extracted using the QIAGEN QIAamp DNA Blood Midi kit. For each sample, sgRNA molecules or

barcodes identifying sgRNA pairs were extracted from the genomic DNA in 24 separate 30-cycle PCR reactions in which 2 mg of DNA

input was included. Illumina adapters were included in the PCR primers (Table S3). Libraries were sequenced using custom read one

primers on the Illumina MiSeq or HiSeq platforms. Following sequencing, reads were trimmed to a length of 20bp and construct

counts were extracted using the bowtie algorithm (Langmead et al., 2009). Constructs were then filtered based on a minimum

read-count threshold of 50 in the reference sample. Corresponding log-fold change valueswere then calculated by dividing the abun-

dance after twelve doublings by the abundance at the reference time point, two days after infection (Knott et al., 2014).

Dual-sgRNA Genomic Scar Analysis
200,000 A-375-Cas9 and K-562-Cas9 cells were transduced with CRoatan constructs targeting 3 different olfactory receptor genes.

Following selection with Puromycin cells were grown for�12 doublings and then harvested for analysis. DNAwas extracted using the

QIAGEN QIAamp DNA Blood Midi kit. The target region, including 50bp upstream and downstream of both sgRNA target sites was

amplified by PCR, in 16 25-cycle PCR reactions in which 500ng of DNA input was included (Table S3). Following purification using the

QIAquick PCR Purification Kit, Illumina adapters were added via PCR and samples were processed on the Illumina MiSeq platform

using paired-end reads of 200bp to cover both sgRNA target sites. Readsweremapped to the relevant genomic region using the bwa

mem algorithm and cut types were analyzed and counted using the CIGAR string of the alignment (Li and Durbin, 2009).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical parameters such as definition of center, error bars and significance are reported in the main text, figures and figure leg-

ends. Data are judged to be significant when p < 0.05 by the rank-sum test or the Friedman test. Statistical significance analysis

was performed in MATLAB using the freidman and ranksum functions.

DATA AND SOFTWARE AVAILABILITY

All raw and processed data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus

under accession number GSE97434. All code will be made available for non-commercial use upon request.

ADDITIONAL RESOURCES

Detailed Protocol
A detailed protocol describing the cloning of pairs of sgRNAs in the pCRoatan-dualSgRNA expression vector is provided in the

Methods S1.

Online Resource
Detailed cloning protocols, plasmid maps and construct designs for all protein coding human genes are available via a web portal:

http://croatan.hannonlab.org.
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