Elabscience®

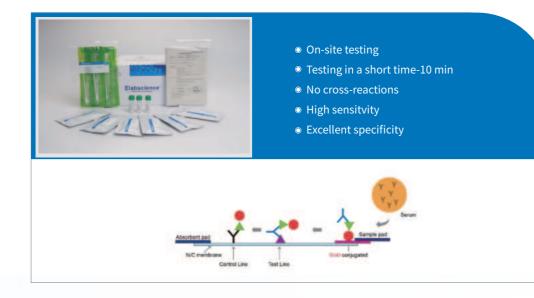
Animal Disease Detection Handbook

By protecting animals, we preserve our future

About Elabscience®

Elabscience[®] specializes in immunodiagnostic technology for life science community. We have complete platform for R&D and manufacture. At the same time, we have in house QC for every product, endeavoring to keep your experiment results more consistent and precise. Through unremitting effort and development, our customers have spread in more than 100 countries all over the world.

Elabscience[®] major products cover a diverse set of Flow Cytometry Antibodies, Cell Function Assay Kits, Metabolic Assay Kits, ELISA Kits, Proteins and Antibodies all of which have passed ISO9001 international certification and EU CE certification.

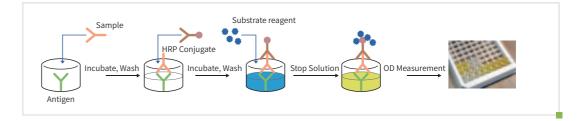

Contents

Detection Methods 3 · Lateral Flow Assay Kit 3

	 Enzyme-Linked ImmunoSorbent Assay Polymerase Chain Reaction 	
)2	Animal Disease	5
)3	Application Examples · Rabies Virus · Avian Influenza · African Swine Fever	6 6 9 15
)4	Product List	16
)5	Why Choose Elabscience®	17

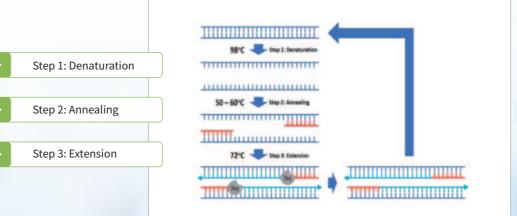
Detection Methods

Lateral Flow Assay Kit



Enzyme-Linked ImmunoSorbent Assay

Efficient


- Positive and negative control • High sensitivity and specificity
- Large-scale testing in a short time
- Easy interpretation of results

Polymerase Chain Reaction

- Strong specificity: base pairing of specific gene sequence segments
- High sensitivity: can detect single cell genes $(10^3 \text{ copies})/\mu L)$
- Low purity requirement: can be used for mixed detection of multiple samples
- The real-time observation results have good repeatability

Elabscience®

Animal Disease

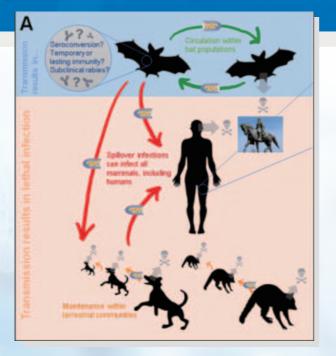
Diseases Introduction

Animal diseases encompass zoonoses, parasitoses, and various other illnesses. These ailments pose a significant threat to animal health, resulting in declines in production. Traditional control measures, such as destruction, often lead to substantial economic losses for the industry. With the deepening of economic globalization, these diseases spread rapidly across borders, exacerbating the situation for both humans and animals, and significantly impacting public health. Due to the diverse variants of pathogens, effective eradication methods remain elusive, leaving prevention as the primary approach to managing these diseases worldwide.

Animal Categories and Their Pathogen/Target

Ruminants Avian Influenza Virus	Companion animals African Swine Fever	Avian Toxoplasmosis	Swine Peste des Petits
Avian Leukosis virus Infectious Bronchitis Marek's Disease Pullorum Diseases Mycoplasma Synoviae Newcastle Disease Virus Egg Drop Syndrome	Swine streptococcsis Porcine Japanese Encephalitis Foot and Mouth Disease Virus Parvovirus Epidemic Diarrhea Virus Transmissible Gastroenteritis Virus Reproductive and	Coronavirus Rotavirus Feline Leukosis Virus Feline Coronavirus Feline Panleukopenia Virus Canine Influenza Virus Rabies Virus	Ruminants Virus Foot and Mouth Disease Virus Tuberculosis Brucellosis Capripoxvirus Hydatidosis Lumpy Skin Disease Virus Alpha-Toxin gene of

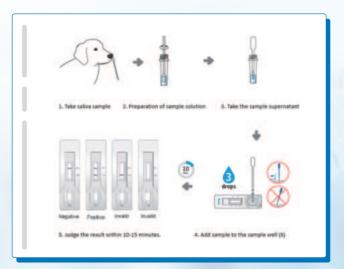
Application Examples


Rabies Virus

The rabies virus, belonging to the family Rhabdovirus and genus Rabies virus, is a single-stranded RNA virus. Sick dogs are the primary source of infection, followed by sick cats, as well as wild or roaming mammals such as wolves, foxes, and bats. Wild animals serve as the primary natural hosts of the rabies virus, and in developed countries, rabies is predominantly caused by bats and wild animals. Rabies is also a zoonotic disease, capable of spreading between animals and humans. People, including hunters, veterinarians, and animal owners, are generally susceptible to rabies. Clinical symptoms of rabies can be fatal for both animals and humans. In cases of human infection, the mortality rate can be as high as 100%, making it one of the deadliest human diseases known. Dogs are the primary cause of human rabies deaths, responsible for approximately 99% of cases. The majority of human deaths occur in Asia and Africa, accounting for over 95% of cases.

The rabies virus resides in the saliva of infected animals and is typically transmitted through contact with wounds or mucosal surfaces. Once contracted, the virus spreads to the peripheral nervous system, spinal cord, and brain. Clinical symptoms are associated with inflammation and brain damage, presenting as hallucinations, hydrophobia, and hyperactivity (in the case of manic/encephalitic rabies), or paralysis and coma (in the case of paralytic rabies), ultimately leading to death. Hydrophobia is a distinctive clinical feature of rabies.

In 2018, the International Committee on Taxonomy of Viruses (ICTV) classified 16 rabies viruses into three genetic lineages (Phylogroup I-III). The genome of the rabies virus RNA encodes five proteins: nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G), and RNA-dependent RNA polymerase protein (L). Among these, antibodies targeting the glycoprotein (G) are crucial for rabies vaccines' effectiveness, as their immune response primarily hinges on their antigenic epitopes, structure, protein folding, and glycosylation. Additionally, the nucleoprotein (N) serves as an effective protective antigen that stimulates both B cells and helper T cells (Th cells), thus inducing cellular and humoral immunity. Furthermore, the nucleotide sequence of the N gene remains relatively stable across rabies viruses, displaying highly conserved characteristics throughout the viral genome. This stability and expression make the N gene widely utilized in studying the molecular epidemiology of rabies viruses.

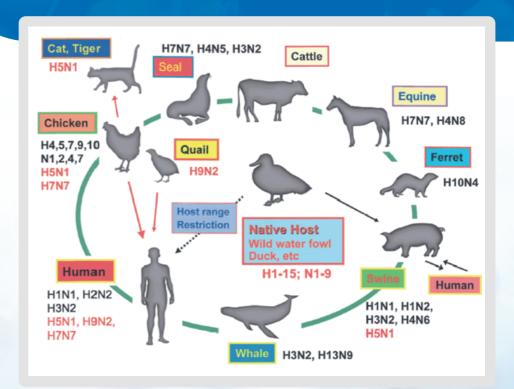

Diagnostic Tests

Rabies is a potentially fatal disease, but what distinguishes it from many other infections is that clinical illness can be prevented through timely detection, even after exposure to the source of infection. The rabies virus belongs to the single-stranded negative RNA virus family, encapsulated within a capsule. The N gene, being the most conservative and stable nucleotide group, serves as the characteristic gene of the rabies virus. Detection of the N gene confirms the presence of the rabies virus. Moreover, a partially conserved nucleotide region of the L gene in the evolution of the rabies virus can also be utilized as a detection target.

Rabies can be detected in samples such as saliva, cerebrospinal fluid, and injured skin tissue, with the virus isolation rate being relatively high in saliva, particularly in infected animals like dogs. Currently, the primary detection methods for rabies include the direct fluorescent antibody test (DFA), direct rapid immunohistochemistry test (dRIT), and pan-lyssavirus reverse-transcription polymerase chain reaction (RT-PCR) assays. These methods are suitable for the initial diagnosis of rabies in animals. For high sample volumes, conventional and real-time RT-PCR can yield rapid results in specialized laboratories. Molecular testing and cell culture, among other verification tests, can also be employed based on the initial test outcomes.

Additionally, serological tests such as the fluorescence antibody virus neutralization test (FAVNT) and enzyme-linked immunosorbent assay (ELISA) are suitable for monitoring antibody responses in vaccinated animals within rabies control programs. Furthermore, the colloidal gold detection method (LFA) can detect the rabies virus in the saliva of dogs and cats, serving as a complementary detection tool for early infection screening and disease diagnosis.

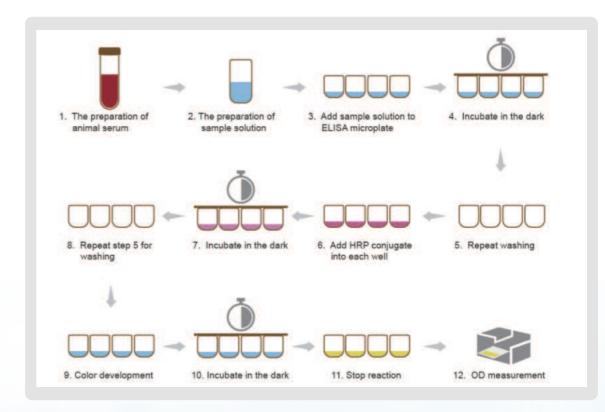
Various screening and diagnostic methods aim to swiftly and accurately detect the rabies virus in the saliva of susceptible animals like dogs and cats, enabling timely measures to prevent disease spread.



Avian Influenza

Avian influenza stems from infection by viruses belonging to the influenza A virus species, within the genus influenzavirus A and family Orthomyxoviridae. Influenza A viruses are categorized into subtypes based on two surface proteins: hemagglutinin (HA) and neuraminidase (NA). Viruses from birds have been found to possess at least 16 hemagglutinins (H1 to H16) and 9 neuraminidases (N1 to N9). Avian influenza viruses in birds are characterized as either low pathogenic (also known as low pathogenicity) or highly pathogenic (high pathogenicity). To date, naturally occurring fully virulent highly pathogenic avian influenza (HPAI) viruses have consistently featured H5 or H7, although there are rare instances of other viruses that could technically qualify as HPAI.

Avian influenza viruses are highly contagious and exhibit significant variability, being widespread among bird populations. While wild birds in aquatic environments are believed to serve as natural reservoir hosts, domesticated poultry are also susceptible to infection. Highly pathogenic avian influenza (HPAI) viruses can emerge from certain low pathogenic avian influenza (LPAI) viruses, particularly within poultry flocks. HPAI strains have the potential to decimate entire poultry populations, with mortality rates reaching up to 90-100%, leading to rapid spread of epidemics, substantial economic losses in the poultry industry, and stringent trade restrictions. Infections with LPAI viruses capable of evolving into HPAI strains can also impact international trade. Although avian influenza viruses primarily affect birds, including domesticated poultry, they can occasionally infect mammals, including humans, typically following close contact with infected birds. While many human cases manifest as conjunctivitis or mild respiratory illness, some viruses can cause severe disease. In rare instances, avian influenza viruses may adapt to circulate among mammalian species, contributing to or causing pandemics in humans.


Diagnostic Tests

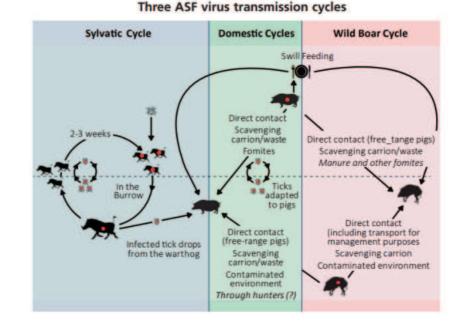
Avian influenza viruses can be detected in oropharyngeal, tracheal, and/or cloacal swabs collected from live birds. The recovery rates from each site vary depending on factors such as the virus strain, bird species, and sample quality. Additionally, samples from internal organs are tested in deceased birds. It's important to validate diagnostic tests for the specific bird species, as some tests that work well in chickens and turkeys may be less reliable in other avian species. Avian influenza viruses can be isolated in embryonated eggs, and they can be subtyped using specific antisera in hemagglutination and neuraminidase inhibition tests. RT-PCR assays enable the direct detection of influenza viruses in clinical samples. Viral antigens can be detected using ELISAs, including rapid tests, although flock-level testing is more reliable than individual bird testing. Serology can be valuable for surveillance and demonstrating freedom from infection, but it's less useful for diagnosing highly pathogenic avian influenza (HPAI) infections in highly susceptible birds, as they often succumb to the disease before developing antibodies. Agar gel immunodiffusion (AGID) tests and ELISAs targeting conserved influenza virus proteins can detect all avian influenza subtypes, while hemagglutination inhibition (HI) tests are subtype-specific and may miss certain infections. Cross-reactivity between influenza viruses can pose challenges. Tests that can differentiate infected from vaccinated birds (DIVA tests) should be utilized in surveillance programs involving vaccination.

Unlocking the Dynamics: Understanding Highly Pathogenic Avian Influenza Worldwide

ses of	dVI			IUC	/ 111 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111				
000 01	uvi	uII		IUG					
							חויוו		
					ions of infection with high				
	ir	ifluenza vir	rus in mar	mmals acco	to Terrestrial Code Article	s 1.1.3 or 1.	1.5.		
					ort in a timely manner all cases of infect				
second second second			1	/ avian influenza i	(HDAI) detected in birds and in other spi		In the		
Summary of reports mad					Summary of reports made				
Serotype country and species		Latest	Number of		Serotype, country, and species	First report date	Latest report date		More inform
	outbreak récort date	putbreak report date	outoreaks Neocited	information				reports	
	report date	report date	reported		0 HSN1				
· H5					- Chie	03/05/2023	08/05/2028	1	
# Argentina	25/06/2023	27/10/2023	18		· Denmark	25/09/2023	25/09/2023	1	P
II Chile	24/02/2023	28/07/2023	34		- Paru	07/02/2023	07/02/2023	1	
il Peru	17/06/2023	17/08/2023	1		Poland	12/07/2028	12/07/2025	1	
= Unuguay	10/05/2023	15/11/2023	12		Spain	21/10/2022	21/10/2022	1	
= HSN1	Longing and				- Soeden	09/08/2023	06/08/2023	4	- Q
# Brazil					 United Kingdom 	20/12/2022	12/10/2025	7	
South American fur					= HSN2	26/10/2023	26/10/2023	1	G
anal					# H5N3	26/10/2023	26/10/2023	1	
5259	11/10/2023	11/10/2028			H5NK				
South-American sea	10.000				 United Kingdom 	23/03/2023	23/03/2023	1	
lion	and the second				Construction of the second				
5259	05/10/2023	24/11/2023	-						
Canada	06/05/2022	05/12/2023	39						
China (People's Rep. of)	25/02/2015	25/02/2015							
# Estonia	17/12/2021	17/12/2021							
# Finland	13/07/2023	07/12/2023							
# France	28/12/2022	06/03/2023	2						
Germany	02/05/2023	12/07/2023	13						
= Ireland	14/02/2022	20/12/2022	2	6					
= Italy	05/05/2023	13/07/2023	3						
# Japan	11/04/2022	03/07/2023							
Kores (Rep. of)	26/07/2023	04/08/2023							
# Latvia	14/07/2023	14/07/2023							
Norway	26/07/2023	26/07/2023							
· Russia	28/08/2023	28/08/2023							

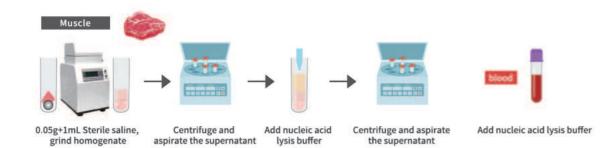
Avian Influenza Virus H5 Antibodies ELISA Kit Detection Process

Diagnostic Tests


African swine fever (ASF) is a contagious viral disease that affects pigs of all ages, inducing a haemorrhagic fever. It can appear in a variety of forms ranging from peracute, acute, subacute, to chronic and unapparent. It is most often recognized in the acute form with an associated lethality of up to 100 percent. Pigs and wild boar can become infected through different routes.

Europe accounted for 67% of the outbreaks reported through immediate notifications and follow-up reports (from: OIE data of 2016-2020). However, the highest impact in terms of animal losses was the highest impact in terms reported in Asia (6733791 animals lost, which is 82 % of the total global reported losses). Important regional differences are observed at Regional level. African countries reported outbreaks only in swine, Asia mainly in swine, while Europe mainly in wildboar. This data corresponds overy different epidemiological situation. There is no treatment or vaccine available for this disease.

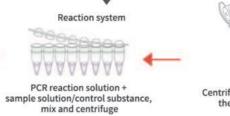
Since there is no vaccine against ASF, An appropriate diagnosis therefore involves the detection and identification of ASFV-specific antigens (E-AD-C080), or DNA (E-AD-P002) and antibodies (E-AD-E106), to obtain relevant information to support control and eradication programmes.


ASF continues to spread worldwide, threatening pig health and welfare. The disease has reached multiple countries across Asia, the Caribbean, Europe, and the Pacific, affecting both domestic and wild pigs.

Humans do not get sick from African swine fever. The disease cannot be transmitted to humans through contact with pigs or by consuming pork products. However, meat contaminated with the ASF virus should not be used to feed pigs, as pigs can get infected this way. It is therefore recommended to avoid feeding pigs with food scraps or kitchen waste that have not been properly treated.

Source: FAO, 2017

African Swine Fever Detection Kit (Real-time PCR) Detection Process



Data analysis

PCR reaction

Centrifuge and aspirate the supernatant

Product List

Disease	Cat.No.	Product Name	Reactivity	Size	Result Type
Adenovirus	E-AD-C065	Canine Adenovirus Antigen Lateral Flow Assay Kit	Canine	40 T	Qualitative
	E-AD-C080	African Swine Fever Antigen Lateral Flow Assay Kit	Swine	40 T	Qualitative
African Swine Fever	E-AD-E106	African Swine fever Antibodies ELISA Kit (Indirect)	Swine	96 T/96 T*2/96 T*5	Qualitative
African Swille Fever	E-AD-E114	African Swine fever Antibodies ELISA Kit (Competitive)	Swine	96 T/96 T*2/96 T*5	Qualitative
	E-AD-P002	African Swine Fever Detection Kit (VP72/CD2V/MGF-PCR)	Swine	50 T/100 T/250 T	Qualitative
Alpha-Toxin gene of clostridium perfringens	E-AD-E108	Alpha-Toxin gene of clostridium perfringens Antibodies ELISA Kit	Goat;Sheep	96 T/96 T*2/96 T*5	Qualitative
Avian Leukosis	E-AD-E074	Avian Leukosis Antigen ELISA Kit	Poultry	96 T/96 T*2/96 T*5	Qualitative
Avian Leukosis virus	E-AD-C054	Avian Leukosis virus Antigen Lateral Flow Assay Kit	Poultry	40 T	Qualitative
	E-AD-C029	Brucellosis Antibodies Lateral Flow Assay Kit	Swine;Cattle;Goat;Sheep	40 T	Qualitative
	E-AD-C041	Brucellosis Antigen Lateral Flow Assay Kit	Cattle;Goat;Sheep	40 T	Qualitative
Brucellosis	E-AD-C097	Canine Brucellosis Antibodies Lateral Flow Assay Kit	Canine	40 T	Qualitative
	E-AD-E035	Cattle Brucellosis Antibodies ELISA Kit	Cattle	96 T/96 T*2/96 T*5	Qualitative
	E-AD-E070	Brucellosis Antibodies ELISA Kit	Swine; Cattle;Goat;Sheep	96 T/96 T*2/96 T*5	Qualitative
	E-AD-E107	Cattle Brucellosis Antibodies ELISA Kit	Cattle	96 T/96 T*2/96 T*5	Qualitative
Calicivirus	E-AD-C101	Feline Calicivirus Antigen Lateral Flow Assay Kit	Cat	40 T	Qualitative
Canine Distemper	E-AD-C025	Canine Distemper Virus Antigen Lateral Flow Assay Kit	Canine	40 T	Qualitative
Capripoxvirus	E-AD-E109	Capripoxvirus Antibodies ELISA Kit	Goat;Sheep	96 T/96 T*2/96 T*5	Qualitative
Circovina Tara	E-AD-C015	Porcine Circovirus Type 2 Antibodies Lateral Flow Assay Kit	Swine	40 T	Qualitative
Circovirus Type	E-AD-E003	Porcine Circovirus Type 2 Antibodies ELISA Kit	Swine	96 T/96 T*2/96 T*5	Qualitative

Disease	Cat.No.	Product Name	Reactivity	Size	Result Type
	E-AD-C008	Classical Swine Fever Virus Antibodies Lateral Flow Assay Kit	Swine	40 T	Qualitative
Classical Swine Fever Virus	E-AD-C053	Classical Swine Fever Virus Antigen Lateral Flow Assay Kit	Swine	40 T	Qualitative
	E-AD-E009	Classical Swine Fever Virus Antibodies ELISA Kit	Swine	96 T/96 T*2/96 T*5	Qualitative
Coronavirus	E-AD-C045	Canine Coronavirus Antigen Lateral Flow Assay Kit	Canine	40 T	Qualitative
Coronavirus	E-AD-C062	Feline Coronavirus Antigen Lateral Flow Assay Kit	Cat	40 T	Qualitative
Drop Syndrome	E-AD-E088	Egg Drop Syndrome (III Adenovirus) Antibodies ELISA Kit	Chicken	96 T/96 T*2/96 T*5	Qualitative
Epidemic Diarrhea Virus	E-AD-E007	Porcine Epidemic Diarrhea Virus Antibodies ELISA Kit	Swine	96 T/96 T*2/96 T*5	Qualitative
Feline herpesvirus	E-AD-C102	Feline herpesvirus Antigen Lateral Flow Assay Ki	Cat	40 T	Qualitative
Feline Leukosis	E-AD-C061	Feline Leukosis Virus Antigen Lateral Flow Assay Kit	Cat	40 T	Qualitative
Feline Panleukopenia	E-AD-C063	Feline Panleukopenia Virus Antigen Lateral Flow Assay Kit	Cat	40 T	Qualitative
	E-AD-C033	Foot and Mouth Disease Virus Type O Antibodies Lateral Flow Assay Kit	Swine;Cattle;Goat;Sheep	40 T	Qualitative
	E-AD-C040	Foot and Mouth Disease Virus Antigen Lateral Flow Assay Kit	Swine;Cattle;Goat;Sheep	40 T	Qualitative
	E-AD-C049	Foot and Mouth Disease Virus NSP Antibodies Lateral Flow Assay Kit	Swine;Cattle;Goat;Sheep	40 T	Qualitative
	E-AD-C056	Foot and Mouth Disease Virus Type A Antibodies Lateral Flow Assay Kit	Swine;Cattle;Goat;Sheep	40 T	Qualitative
Foot and Mouth	E-AD-C057	Foot and Mouth Disease Virus Type Asia I Antibodies Lateral Flow Assay Kit	Swine;Cattle;Goat;Sheep	40 T	Qualitative
Disease	E-AD-E017	Foot and Mouth Disease Virus Type O Antibodies ELISA Kit	Swine;Cattle;Goat;sheep	96 T/96 T*2/96 T*5	Qualitative
	E-AD-E019	Foot and Mouth Disease Virus Type A Antibodies ELISA Kit	Swine;Cattle;Goat;sheep	96 T/96 T*2/96 T*5	Qualitative
	E-AD-E020	Foot and Mouth Disease Virus Type Asia I Antibodies ELISA Kit	Swine;Cattle;Goat;sheep	96 T/96 T*2/96 T*5	Qualitative
	E-AD-E050	Cattle and Goat Foot and Mouth Disease Virus Type O Antibodies ELISA Kit	Cattle;Goat;Sheep	96 T/96 T*2/96 T*5	Qualitative
	E-AD-E059	Porcine Foot and Mouth Disease Virus Type O VP1 Antibodies ELISA Kit	Swine	96 T/96 T*2/96 T*5	Qualitative

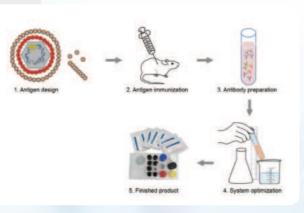
Disease	Cat.No.	Product Name	Reactivity	Size	Result Type
	E-AD-E065	Foot and Mouth Disease Virus NSP Antibodies ELISA Kit	Swine;Cattle;Goat;Sheep	96 T/96 T*2/96 T*5	Qualitative
Foot and Mouth Disease	E-AD-E072	Cattle and Goat Foot and Mouth Disease Virus Type Asia I Antibodies ELISA Kit	Cattle;Goat;Sheep	96 T/96 T*2/96 T*5	Qualitative
	E-AD-E084	Cattle and Goat Foot and Mouth Disease Virus Type A Antibodies ELISA Kit	Cattle;Goat;Sheep	96 T/96 T*2/96 T*5	Qualitative
Hydatidosis	E-AD-C032	Cattle and Goat Hydatidosis Antibodies Lateral Flow Assay Kit	Cattle;Goat;Sheep	40 T	Qualitative
nyuatiuosis	E-AD-E110	Cattle Hydatidosis Antibodies ELISA Kit	Cattle	96 T/96 T*2/96 T*5	Qualitative
Infectious Bronchitis Virus	E-AD-E012	Chicken Infectious Bronchitis Virus Antibodies ELISA Kit	Chicken	96 T/96 T*2/96 T*5	Qualitative
Infectious Bursal Disease	E-AD-E061	Chicken Infectious Bursal Disease Antibodies ELISA Kit	Chicken	96 T/96 T*2/96 T*5	Qualitative
	E-AD-C001	Avian Influenza Virus H5 Antigen Lateral Flow Assay Kit	Poultry	40 T	Qualitative
	E-AD-C002	Avian Influenza Virus Antigen Lateral Flow Assay Kit	Poultry	40 T	Qualitative
	E-AD-C004	Avian Influenza Virus H7 Antigen Lateral Flow Assay Kit	Poultry	40 T	Qualitative
	E-AD-C017	Avian Influenza Virus Antibodies Lateral Flow Assay Kit	Poultry	40 T	Qualitative
	E-AD-C019	Avian Influenza Virus H9 Antigen Lateral Flow Assay Kit	Poultry	40 T	Qualitative
	E-AD-C021	Avian Influenza Virus H5 Antibodies Lateral Flow Assay Kit	Poultry	40 T	Qualitative
Influenza Virus	E-AD-C042	Avian Influenza Virus H7 Antibodies Lateral Flow Assay Kit	Poultry	40 T	Qualitative
	E-AD-C043	Avian Influenza Virus H9 Antibodies Lateral Flow Assay Kit	Poultry	40 T	Qualitative
	E-AD-C064	Canine Influenza Virus Antigen Lateral Flow Assay Kit	Canine	40 T	Qualitative
	E-AD-C074	Swine Influenza Virus Antigen Lateral Flow Assay Kit	Swine	40 T	Qualitative
	E-AD-E034	Avian Influenza Virus Antibodies ELISA Kit	Poultry	96 T/96 T*2/96 T*5	Qualitative
	E-AD-E045	Avian Influenza Virus H5 Antibodies ELISA Kit	Poultry	96 T/96 T*2/96 T*5	Qualitative
	E-AD-E095	Avian Influenza Virus H7 Antibodies ELISA Kit	Poultry	96 T/96 T*2/96 T*5	Qualitative

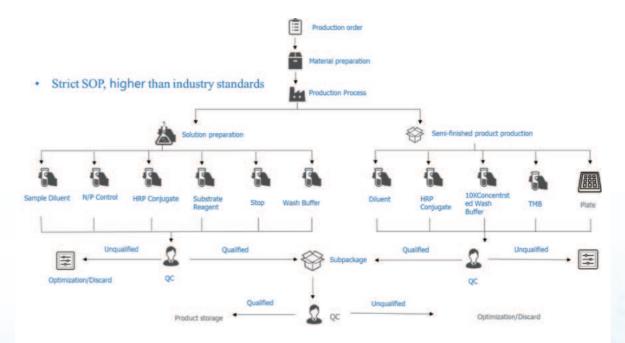
Disease	Cat.No.	Product Name	Reactivity	Size	Result Type
Influenza Virus	E-AD-E096	Avian Influenza Virus H9 Antibodies ELISA Kit	Poultry	96 T/96 T*2/96 T*5	Qualitative
Japanese Encephalitis Virus	E-AD-E002	Porcine Japanese Encephalitis Virus Antibodies ELISA Kit	Swine	96 T/96 T*2/96 T*5	Qualitative
Leptospira	E-AD-C079	Canine Leptospira IgM Lateral Flow Assay Kit	Canine	40 T	Qualitative
Lumpy Skin Disease Virus	E-AD-E112	Bovine Lumpy Skin Disease Virus Antibody ELISA Kit	Bovine	96 T/96 T*2/96 T*5	Qualitative
Marek's Disease virus Antibodies	E-AD-E075	Chicken Marek's Disease virus Antibodies ELISA Kit	Chicken	96 T/96 T*2/96 T*5	Qualitative
Mycoplasma Gallisepticum	E-AD-E060	Chicken Mycoplasma Gallisepticum Antibodies ELISA Kit	Chicken	96 T/96 T*2/96 T*5	Qualitative
MycoPlasma Hyopneumonia	E-AD-E105	Porcine MycoPlasma Hyopneumonia Antibodies ELISA Kit	Swine	96 T/96 T*2/96 T*5	Qualitative
Mycoplasma Synoviae	E-AD-E089	Chicken Mycoplasma Synoviae Antibodies ELISA Kit	Chicken	96 T/96 T*2/96 T*5	Qualitative
	E-AD-C003	Newcastle Disease Virus Antigen Lateral Flow Assay Kit	Poultry	40 T	Qualitative
Newcastle Disease	E-AD-C018	Newcastle Disease Virus Antibodies Lateral Flow Assay Kit	Poultry	40 T	Qualitative
	E-AD-E013	Newcastle Disease Virus Antibodies ELISA Kit	Poultry	96 T/96 T*2/96 T*5	Qualitative
	E-AD-C023	Canine Parvovirus Antigen Lateral Flow Assay Kit	Canine	40 T	Qualitative
Parvovirus	E-AD-C035	Porcine Parvovirus Antibodies Lateral Flow Assay Kit	Swine	40 T	Qualitative
	E-AD-E010	Porcine Parvovirus Antibodies ELISA Kit	Swine	96 T/96 T*2/96 T*5	Qualitative
	E-AD-C028	Goat and Sheep Peste des Petits Ruminants Virus Antibodies Lateral Flow Assay Kit	Goat;Sheep	40 T	Qualitative
Peste des Petits Ruminants	E-AD-C078	Goat and Sheep Peste des Petits Ruminants Virus Antigen Lateral Flow Assay Kit	Goat;Sheep	40 T	Qualitative
	E-AD-E036	Goat and Sheep Peste des Petits Ruminants Virus Antibodies ELISA Kit	Goat;Sheep	96 T/96 T*2/96 T*5	Qualitative
	E-AD-C014	Porcine Pseudorabies Virus Antibodies Lateral Flow Assay Kit	Swine	40 T	Qualitative
Pseudorabies Virus	E-AD-E008	Porcine Pseudorabies Virus Antibodies ELISA Kit	Swine	96 T/96 T*2/96 T*5	Qualitative
	E-AD-E021	Porcine Pseudorabies Virus gpl Antibodies ELISA Kit	Swine	96 T/96 T*2/96 T*5	Qualitative

Disease	Cat.No.	Product Name	Reactivity	Size	Result Type
Pseudorabies Virus	E-AD-E040	Porcine Pseudorabies Virus gB Antibodies ELISA Kit	Swine	96 T/96 T*2/96 T*5	Qualitative
Pullorum Diseases	E-AD-E076	Chicken Pullorum Diseases Antibodies ELISA Kit	Chicken	96 T/96 T*2/96 T*5	Qualitative
Rabies	E-AD-C024	Rabies Virus Antigen Lateral Flow Assay Kit	Canine;Cat	40 T	Qualitative
Rables	E-AD-E069	Rabies Virus Antibodies ELISA Kit	Canine	96 T/96 T*2/96 T*5	Qualitative
Reproductive and Respiratory	E-AD-C009	Porcine Reproductive and Respiratory Syndrome Virus Antibodies Lateral Flow Assay Kit	Swine	40 T	Qualitative
Syndrome Virus	E-AD-E006	Porcine Reproductive and Respiratory Syndrome Virus Antibodies ELISA Kit	Swine	96 T/96 T*2/96 T*5	Qualitative
Rotavirus	E-AD-C060	Rotavirus Antigen Lateral Flow Assay Kit	Canine	40 T	Qualitative
Rotaviius	E-AD-C098	Rotavirus Antigen Lateral Flow Assay Kit	Swine;Cattle	40 T	Qualitative
Streptococcsis	E-AD-P003	Swine Streptococcsis Detection Kit (PCR)	Swine	50 T/100 T/250 T	Qualitative
	E-AD-C044	Canine Toxoplasmosis Antibodies Lateral Flow Assay Kit	Canine	40 T	Qualitative
Tovonloomooio	E-AD-C099	Canine Toxoplasmosis Antigen Lateral Flow Assay Kit	Canine	40 T	Qualitative
Toxoplasmosis	E-AD-C100	Cat Toxoplasmosis Antibodies Lateral Flow Assay Kit	Cat	40 T	Qualitative
	E-AD-E004	Porcine Toxoplasmosis Antibodies ELISA Kit	Swine	96 T/96 T*2/96 T*5	Qualitative
Transmissible Gastroenteritis Virus	E-AD-E041	Porcine Transmissible Gastroenteritis Virus Antibodies ELISA Kit	Swine	96 T/96 T*2/96 T*5	Qualitative
Tuberculosis	E-AD-C007	Cattle and Goat Tuberculosis Antibodies Lateral Flow Assay Kit	Cattle;Goat;Sheep	40 T	Qualitative
Tuberculosis	E-AD-E071	Bovine Tuberculosis Antibody ELISA Kit	Cattle	96 T/96 T*2/96 T*5	Qualitative

New products are continuously being updated. Please inquire if your desired kits are not listed above.

Why Choose Elabscience®


Animal disease incidents are problems faced by all countries in the world and are related to the health of human life. Elabscience uses its technological advantages accumulated in immunological testing to develop animal disease detecting products for you.


R&D Process

25,000 m² total area and 6,000 m² GMP plant. The whole production process follows the GMP management, and the whole process is closely monitored to ensure product quality.

QC Process

